The factors influencing the growth in dropshipping orders during the COVID-19 pandemic

Aleksandra Górecka1, Paulina Zborowska2
1 Warsaw University of Life Sciences – SGGW, Institute of Economics and Finance, Department of Logistics, 2 Warsaw University of Life Sciences – SGGW, Faculty of Economics
Górecka, Aleksandra; ORCID: 0000-0002-2679-561X (Warsaw University of Life Sciences – SGGW, Institute of Economics and Finance, Department of Logistics)
Zborowska, Paulina (Warsaw University of Life Sciences – SGGW, Faculty of Economics)
The factors influencing the growth in dropshipping orders during the COVID-19 pandemic
Czynniki wpływające na wzrost liczby zamówień w modelu dropshipping w czasie pandemii COVID-19
Ekonomika i Organizacja Logistyki, 2020, vol.5, nr 3, s. 65-76

Słowa kluczowe

dropshipping Polish market COVID-19

Key words

dropshipping polski rynek COVID-19

Streszczenie

The paper aimed to investigate the most significant factors influencing the growth in orders in the dropshipping model in Poland. The research was conducted during the pandemic time and was compared with the results in the levels in orders in 2019. The main factors that have impacts on the growth in the level of orders were introduced out of B2B and B2C variables. The results present that apart from the product type, the payment method, marketing by supplier entity, and the number of suppliers is crucial for a dropshipping business model.

Abstract

Celem artykułu było zbadanie najważniejszych czynników wpływających na wzrost zamówień w modelu dropshipping w Polsce. Badania przeprowadzono w okresie pandemii COVID-19 i porównano z wynikami w zakresie poziomów zamówień w 2019 roku. Czynniki mające wpływ na wzrost poziomu zamówień (zmienne) podzielono na dwie grupy: B2B i B2C. Wyniki wskazują, że poza rodzajem produktu kluczowe dla wzrostu zamówień w modelu biznesowym dropshipping były: dostępne sposoby płatności, rozwiązania marketingowe, dostawcy oraz liczba dostawców sklepu.

Cytowania

  1. Breiman L., Friedman J.H., Olshen R.A., Stone C.J., 1993: Classification and Regression Trees, Chapman and Hall, Boca Raton, FL.
  2. Church E.M., Oakley R.L., 2018: Etsy and the long-tail: How microenterprises use hyper-differentiation in online handicraft marketplaces, Electronic Commerce Research and Applications 18, 883–898.
  3. Dobosz K., 2012: Handel elektroniczny, Polsko-Japońska Wyższa Szkoła Technik Komputerowych, Warszawa.
  4. 10.1016/j.jbusres.2020.06.008
    Donthu N., Gustafsson A., 2020: Effects of COVID-19 on business and research, Journal of Business Research Volume 117, 284–289.
  5. eCommerceFuel, 2020: eCommerce Trends Report, [electronic source] https://www.ecommercefuel.com/ecommerce-trends/
  6. Gatnar E., 2001. Nieparametryczna metoda dyskryminacji i regresji, Wydawnictwo Naukowe PWN, Warszawa.
  7. https://www.code-ship.com/en/Blog/dropshipping-explained/
  8. Israfilzade K., 2017: Advantages and disadvantages of drop-shipping, Eкономічні науки, Молодий вчений 7(47), 410–413.
  9. Kamalapur R., Lyth D., 2020: Impact of stockout compensation in e-commerce drop-shipping supply chain, Operations and Supply chain Management 13(1), 82–93.
  10. Łapczyński M., 2002: Przyczynowa interpretacja drzew klasyfikacyjnych, [in:] Zależności przyczynowo-skutkowe w badaniach rynkowych i marketingowych, S. Mynarski (ed.), Wydawnictwo AE w Krakowie, Kraków, 47–60.
  11. Luo M.M., Chea S., Chen J.-S., 2011: Web-based information service adoption: a comparison of the motivational model and the uses and gratifications theory, Decision Support Systems 51(1), 21–30.
  12. OECD, 2020a: COVID-19 and the retail sector: impact and policy responses, OECD Policy Responses to Coronavirus (COVID-19), [electronic source] http://www.oecd.org/coronavirus/policy-responses/covid-19-and-the-retail-sector-impact-and-policy-responses-371d7599/
  13. OECD, 2020b: E-commerce in the time of COVID-19, OECD Policy Responses to Coronavirus (COVID-19), [electronic source] http://www.oecd.org/coronavirus/policy-responses/ecommerce-in-the-time-of-covid-19-3a2b78e8/#endnotea0z2
  14. Park C., 2016: A partial backordering inventory model with a drop-shipping option under purchase dependence, Korean Management Science Review 33(1), 1–16.
  15. 10.1016/j.futures.2020.10254
    Reuschke D., Mason C., 2020: The Engagement of Home-Based Businesses in the Digital Economy, Futures 102542, 1–13.
  16. Robusté F., 2005: Logística del transporte, 10th ed., Edicions UPC, Barcelona.
  17. Shoper Blog eXperience, 2020: Handel vs koronawirus: Jak sprzedaż przeniosła się do internetu [RAPORT], [electronic source] https://www.shoper.pl/blog/handel-vs-koronawirus-jaksprzedaz-przeniosla-sie-do-internetu/
  18. Singh G., Kaur H., Singh A., 2018: Dropshipping in E-Commerce: A Perspective. Proceedings of the 2018, 9th International Conference on Ebusiness, Management and Economics, 7–14.
  19. 10.1016/j.jretconser.2020.102
    Trong Thuy Tran L., 2021: Managing the effectiveness of e-commerce platforms in a pandemic, Journal of Retailing and Consumer Services 58(2021), 102287, 1–9.
  20. Whitley A., 2015: Using statistical learning to predict survival of passengers on the RMS Titanic, Kansas State University Manhattan, Kansas.
  21. Zair F., Sefiani N., Fourka M., 2018 : Advanced optimization model of resource allocation in the B2C supply chain, Engineering Review 38(3), 328–337.